Basesoft

open systems ab

Base/OPEN Object—Oriented Data Base Management System,

EasyDB — Release 5

Overview

Two products

® FasyDB

® FasyDB LiTe

The Base/OPEN Object-Oriented Data
Base Management System EasyDB
represents a new generation of data
base technology developed in the
wake of relational data base systems.

The Base/OPEN Data Base Manage-
ment System (DBMS) is optimized for
long—Ilasting and large transactions
which are characteristic of engineering
applications. It provides facilities to
create and maintain a common data
base for different applications. The data
base is object-oriented, which provides
for natural, real-world oriented data
modelling making it particularly efficient
for CAD/CASE-applications. It is avail-
able for several modern workstations
making it possible to write portable ap-
plications.

Base/OPEN Object-Oriented Data Base
Management System is shipped in one
of the following configurations.

EasyDB Release 5.2 is a multi-user
DBMS. It allows network distribution,
utilizing NCS and NFS or any other
global distributed file system for opti-
mized performance.

EasyDB Release 5.1 is a single-user
data manager (in the same sense as a
UNIX file system), designed to acceler-
ate the development rate for a single
tool. The user interface is upward com-
patible with multi-user EasyDB 4.2.

Product Perspective

Performance

2005-11-02

The purpose of the Base/OPEN DBMS
is to be supremely useful for engineer-
ing applications, e.g. CAE, CAD,
CASE. We take a practitioner’s view,
how to make things work. Extensions
to traditional database models, like ob-
ject—orientation, are a means to ths
end, not goals by themselves.

The first question a potential applica-
tion developer asks about a DBMS is
invariably. "What about performance?”

Conceptual
Simplicity

The Classical
Database
Problem

Persistence is
not enough

EasyDB is designed to allow applica-
tions to keep much of their run-time
data structures in the database, without
sacrificing too much performance
compared to hard-wired tool specific
data structures.

The philosophy is to achieve
performance by conceptual simplicity.
This is another aspect of performance
orientation. The value of added con-
cepts and facilities have been carefully
weighed against their cost in terms of
performance.

EasyDB provides solutions for "the
classical database problem”:

achieving data independence under the
assumption that data is a shared re-
source. Here lies much of the motiva-
tion for using a DBMS in the first place.
Main goals are,

To make data definitions visible, shar-
able (in contrast to being buried in ap-
plication code), and largely program-
ming language independent.

To free data definitions from storage
mechanism considerations (in contrast
to being hardware-dependent).

To allow data definitions to be modified
(or at least extended) without invalidat-
ing existing data or applications.

It is clear that just picking an object-
oriented programming language and
making its objects persistent does not
achieve these goals.

EasyDB Product Description

Interfaces

The Base/OPEN EasyDB has two ge-
neric interfaces — DDL and DML. The
DDL (Data Definition Language) is
based on the well-known Entity/Rela-
tionship model’ and is used to define
the structure of data in terms of entity
types, relationships and attributes. The
DML (Data Manipulation Language)
works on two different levels: interactive
for ad-hoc access and query and as an
embedded language for highest perfor-
mance.

1. Concepts and terminology for the Conceptual schema and
the information base, ISO/DTR 9007.

BO9%6 1170 1

Base/OPEN Object—Oriented Data Base Management System,

EasyDB — Release 5

Z2
Data Model I Applications . I
ser 2
NaL, T
C-DDg—— DBl DBed ——|——
T EasyDB runtim*di
G-DDL
Data The data description language is
Definition strongly influenced by entity-relation-
Language ship concepits. It allows you to define

entity types and relationships between
them. An entity type is defined as a set

of aftributes. Relationships are inherent-
ly bi-directional. This is the basic frame-

work upon which two strains of DDL
are defined — C—DDL and A—DDL. All
DDL definitions are stored in a data
dictionary (DD). G—DDL is an interac-
tive graphical modeling tool.

C—-DDL - Concepts:

e entity type
single inheritance between entities
e attribute
entity types may have attributes
Database keys model global relationships
e relationship
bi—directional, between entity types, local
e cluster type
collection of related entity types
introduces version control level
C-DDL Conceptual DDL (C—DDL) is the lan-

guage you use to express your data
model (schema). With the exception of
clusters, C—DDL is kept on a logical
level.

Entity types The basic modelling unit is the entity
type which has a name and may have
attributes. An attribute has a name and

a value. The entity is the small grain
object.

Attributes There is a rather complete type system

for attributes. In addition to convention-
al data types there are two specialized
ones: Bytestream for storing large vary-
ing length character strings — the
source code for a program module, for
instance. Database key for storing refer-
ences between entity instances in dif-
ferent clusters in the data base thus
used to model global relationships.

Domains Strictly speaking, an attribute is associ-

ated with a domain rather than with a
type. A domain is defined as a base
type plus a range of possible values.
Domain definitions are collected in
compilation units called packages.

Relationships Relationship types in EasyDB are

binary and local, connecting two entity
types within a cluster. Relationships
may be traversed in both directions, i.e.
they are bi—dlrectional. Thus referential
integrity is guaranteed. Relationship
types may be of different cardinalities.
The cardinalities are:

° one—to—one and

o one—to—many.
Either or both ends of a relationship
may be qualified as required. This is a
means for expressing that entity
instances at relationship ends must be
attached to each other.

Inheritance An entity type may inherit another enti-

ty type. All attributes and relationships
are inherited in such case. Any number
of inheritance levels are allowed.

Person
name
bore
PN
Male Female
married

-- C-DDL text:

ENTITY Female ISA Person : femaleType

-- Female inherits Person

REL bore ONE Female MANY Person
-— A Female may have given birth to many
-- Persons (Male or Female)

BO9%6 1170 2

Base/OPEN Object—Oriented Data Base Management System,

EasyDB — Release 5

Cluster types ~ The implementation independent na- Schema New cluster types can be added to a
ture of C—DDL is broken by the con- Evolution universe at any time. A cluster type
cept of cluster type. This sets a physi- definition can be modified, as long as it
cal boundary around a structure of en- is only extended, without disrupting
tit es and relationships thus defin- data base operation. E.g. you can add

y typ
ing a large grain object or aggregation. a new attribute, a new relationship etc.
Relationships crossing a cluster type to an entity type without any need of
boundary are called global in contrast re-compiling old applications. In other
to local relationships. The global rela- words, there may be several versions
tionship is in EasyDB modelled by the of one and the same cluster type.
Database key attribute which is a one— Instances of old cluster type versions
directional pointer. may co-exist with instances of newer

Aggregation The main reason for not concealing versions.
clu.ster boundaries behind a logical lay- Versioning The cluster is the unit of physical i/o. A
er is performance. In CAE a large de- cluster, when opened, is transferred in
sign is always divided into comprehen- its entirety to virtual memory. The clus-
S|blelde3|gn objiects, e.g. a Document ter is also the unit of versioning and ac-
consists of section headers, para- - cess control. Cluster versions are orga-
graphs etc.. Thus we believe there is nized in tree structures called version
generally a natural mapping between trees. The version tree is the unit of dis-
design objects and cluster types. tribution.

':.Ioirrfﬂ_ibrary_ ——q BO DocumentLibrary
| =—+r | Instance -i
I | oran , I I document head || document head |_
I] docur-nents I I f‘g[OroQ178 ggnggéii | —_i
I I I document_body i hoad |
I doc;J/ment head I L — e — Jal I
|| e . | [ioctmm sy | [rccumrmen |
I document_body Type (C/aSS) I
. Ay . mosmm
:- document_bod [| l- [T l_Bolgﬂﬂz]_____'
abstract I I abstract | S od 1 I
I SRS I l Preliminary | Zl(;:g';ecr; = I
= 3\ sections I I i Reviewed |
|
major_section l l_ _____ I
= header text | supsections | A JI
| ﬂ i ey | Version =——————
I | chapter | | appendix | |
- - - - _ _ _—_ i
_ o) A-DDL A universe may contain many cluster

Structural OO In the termmology of Dittrich, KR Ea- types. Application DDL (A—DDL) is
SV_DB (ODBMSf) is structurally object— used to define a view (application
on /enteq. That is, methods are not schema), i.e. a subset of the total sche-
stored in the data base. ma. A data base application has to be

Universe C-DDL is also used to define a data associated with one or more views.

universe for applications. A universe
may be, for example, all data needed
by all CAD tools, the ”cad-production-
universe”, or a "test-universe” for test-
ing out new applications and changed
schemas. The universe consists of a
number of cluster types.

2. Object—0Oriented Databases from Entity —Relationship Ap-
proach, S. Spaccapietra (ed.). Elsevier Science Publishers 1986.

BO96 1170 3

Base/OPEN Object—Oriented Data Base Management System,

EasyDB — Release 5

Data EasyDB offers two DML'’s for program
Manipulation development, NQL (for programs
Language written in Ada and C) and DBI (for pro-

Dynamic and
static DML

NQL —
a C and Ada
Interface

grams written in C++ and Ada95).

There are two strategies when access-
ing data, static and dynamic access.
Static access is type-safe and the fast-
est in terms of execution speed. Dy-
namic access is the flexible way, useful
for instance when writing application
independent database browsing tools,
like DBed.

The basic DML is called NQL
(Navigational Query Language). It is
embedded in a host language (C and
Ada at the moment). NQL in itself is
host-language independent. As its
name suggests, NQL is navigational.

NQL Concepts:

cursor
refers to an entity instance or is nil

navigation
move cursor from entity to entity by select

query and update attribute values
create/delete, attach/detach entities

other open/close on clusters

NQL (C—-language binding) — Example:

NQL DECLARE

NQL EVERY cur (Female)

/*

of all children
See ”"C-DDL” figure.

* Print the name (and age)
* not older than 18 years.
&/
(CURSOR) cur;
MEMBER bore
WHERE { cur (Person)->age <= 18 }
FROM femaleCur
printf ("Name %s”, cur (Person)->name) ;

printf (" Age %d\n”, cur (Person)->age) ;

NQL ENDEVERY

Cursors

NQL introduces a cursor concept. A
cursor either refers to an entity or is nil.
Cursors are declared in a way similar
to ordinary variables.

NQL (Ada—language binding) — Example:

NQL

of all children
See ”"C-DDL” figure.

Print the name (and age)

not older than 18 years.
DECLARE (CURSOR) cur;
EVERY cur (Female)
WHERE { cur (Person)->age
FROM femaleCur

MEMBER bore
<= 18 }

Text_To.put ("Name ” & cur (Person)->name) ;
Text Io.put_line(” Age ” &
integer’ image (cur (Person) ->age)) ;
ENDEVERY

DBI — DBl is a C++ and Ada95 interface to
aC++ EasyDB. It deals with data manipula—
and Ada9s tion, i.e. it is a DML (like NQL) as op—
Interface posed to a DDL. DBI is used for writing
C++ and Ada95 application programs
to access data in EasyDB. The DBI
system has two main parts:
® the predefined class library, and
® the view generator program.
DBI Classes The class library interface provides all

general functionality of the data base
manager interface. The view generator
program generates schema-specific
classes, types and constants which ex-
tend the existing class library with faster,
more specialized functionality. A sche-
ma-specific class corresponds to the
C—DDL entity concept.

BO96 1170 4

Base/OPEN Object—Oriented Data Base Management System,
EasyDB — Release 5

DBI Concepts:

e entity handle concept
typed reference to an entity instance
oris nil

DBI Ada95—language binding — Example:

-— Print the name (and age) of all children
e navigational

move handle from entity
to entity by select or iteration
—— by entity class operations

-- not older than 18 years. See ”C-DDL” figure.
Person H :
My It
Status

SReg.Person (My_Module); -- decl. handle
: DBI.Iterator; -- declare iterator
: DBI_Standard.DBI_Bool :=

* query and update attribute DBI_Standard.DBI_True;

values — — by entity/attribute operations

-- initialize an iterator

create/delete, attach/detach

= . . SReg.Every (SReg.Get Bore (Female H), Female H,
entities —— by entity class operations

My It, DBI Standard.DBI LEQ,
(Sreg.Age, Sreg.Age, 18));

e other openjcloseon while Status = DBI Standard.DBI True loop
clusters —— by entity class operations DBI.Next (My It, o o 3, St;tus> ;
if Status = DBI_Standard.DBI_True then
Text_IO.Put(”"Name ” & SReg.Name (Person H)
A DBI In short, a DBI application is created in Text I0.Put_Line(” Age ” &
Application the following steps: Integer’ Image (SReg.Age (Person H)) ;
® (Create a schema description with end 1f;
end loop;

C—DDL or G—DDL tools. The result will
be a representation of the schema
which is stored in the Data Dictionary.

e Define the application view, a subset of

the conceptual schema, by means of
A—DDL.

® Generate ready-to-use schema-specific
C++ or Ada9gs classes, types and
constants with the cxxview or
ada95view tool.

DBI C++ —language binding — Example:

/*

* Print the name (and age) of all children

* not older than 18 years. See ”"C-DDL” figure.

&/
sreg Person personH (myModule); // decl. handle
dbi_ Iterator myit; // declare iterator
// initialize an iterator
femaleH.bore every age (myit, DBI_LEQ, 18);
while (myit.next (personH) == DBI_TRUE)

{
cout << ”"Name ” << personH.name () ;

cout << ” Age ” << personH.age() << endl;

o Write your C++ or Ada95 application
programs utilizing the DBI library and
the generated classes to create a data
base and manipulate its contents. It is
possible, and sometimes very useful, to
write an application without using gen-
erated classes at all. This is called dy-
namic DBI versus static DBl where you
use the names defined in the schema.
The DBI example uses static DBI — i.e.
we call member functions of generated
schema-specific classes.

BO9%6 1170 5

Base/OPEN Object—Oriented Data Base Management System,

EasyDB — Release 5

BGL

BGL Tool Set

Interfaces provided by a DBMS (either
procedural or embedded textual lan-
guage) are often aimed at optimizing ap-
plication run—time performance with the
disadvantage being the necessity of rely-
ing on special programs written in
C/C++ or Ada. The Base/OPEN BGL
tool set, on the other hand, functions at a
higher level and is optimized to minimize
development time.

The Base/OPEN BGL tool set consists of
graphical modeling and interactive query
tools. By employing BGL it is possible to
develop and maintain conceptual mod-
els and to accelerate the development of
query and update applications.

Furthermore greater independence from
the underlying DBMS concepts is
achieved as the work itself is conducted
on the well-known, extended entity-rela-
tionship concept level. With the BGL tool
set it is no longer necessary to iterate in
the edit—compile—run—debug loop.

Graphical DDL

Interactive DML

The Graphical Data Definition Language
(“G—DDL”) is a tool for conceptual mod-
eling and schema definition based on
the data modeling concepts Entity—
Relationship—Attribute (ERA) combined
with Object-Orientation (OO).

The interactive DML is called DBed.
DBed is a tool for ad-hoc query ("inter-
active NQL) and rapid development of
data base applications. DBed also sup-
ports scripting and provides interactive
query access to the data dictionary
(DD), of EasyDB. DBed is written en-
tirely in C and dynamic NQL, thus
demonstrating the strength and open-
ness of the EasyDB interfaces.

DBed (interactive DML) — Example:

-— print the name

—-- not older

Female >> every bore (age<=18) {print :name :age}

(and age) of all children,

than 18 years.

Attribute: ’'name’ = ’John’
Attribute: ’age’ = 13"
Attribute: ’'name’ = ’Susan’
Attribute: ’age’ = 090

(DBed) No more members.

-— Query DataDictionary for relationships,

-- where Female has the role of Head
Female >> dd head
HEAD --> sreg.Female

Female - (bore)* Person

Female - (married)- Male

BO9%6 1170 6

Base/OPEN Object—Oriented Data Base Management

System,

EasyDB — Release 5

EasyDB
Productivity

The figure below illustrates the
productivity in using DBI — the C++ in-
terface to EasyDB. Assume we start off
from one schema picture with 15 entities
each having 5 attributes, 15 relationships
and 5 clusters, created with the G—DDL
modelling tool. From this, about 200 lines
C—DDL may be generated. The schema
is compiled into the data dictionary with
the cddl tool. The cxxview class genera-
tor reads the data dictionary and creates
schema specific-classes, query member
functions etc., for the view defined with
the addl tool. The generated code will be
about 5000 lines of C++ code in this
case, ready to use in application (appl.C
in the figure) development or for extend-
ing DBI with user-defined member func-
tion.

Productivity example

schema picture

dbi_header.h

schema.cddl
CLUSTER

(2 200 lines cDDL

cli gddl (mapper)/

cddl schema.cddl

Data

(addl viewname —ccll. ... dictionary

(exxview viewname

.- appl.o

EasyDB run—time lib

dbi_viewnarhe.h j L -

@ 5000 lines appl.
specific class lib.

libdbi.a

1400 lines
(plus 7000
lines generic
class lib.)

BO9%6 1170 7

Base/OPEN Object—Oriented Data Base Management System,

EasyDB — Release 5

EasyDB
Architecture

A

SDM

Example

The EasyDB system is implemented as
two levels of data managers in a multi-cli-
ent — multi-server architecture. This is il-
lustrated in the next figure. The data
managers are called ADM and SDM.

e ADM - Application Data Manager, li-
brary to be linked with the application.
e SDM — Storage Data Manager. One
process for each host/disk you want to
store database contents on.

Application I

ADM

SDM SDM

EasyDB can be configured in numerous

Configurations configurations as outlined in the follow-

ing figures.

Light weight
EasyDB LiTe
Applicati , ,
A%?\,:fsagﬂ] Multi—client | server
EasyDB
‘ Application Application Application
@ ADM ADM ADM

‘* 0

SDM

)

]

The above figure first shows light weight
EasyDB LiTe and next multi-user EasyDB
in a single server and multi-client config-
urations. The clients need not run on the
same host as the servers. Below we
have added more EasyDB servers run-
ning on different hosts in a local area net-

e

work, a multi-server configuration. Cli-
ents running on different hosts in the net-
work have transparent access to data
managed by the different servers. This is
configured by the database administra-
tor. EasyDB includes other server pro-
cesses not included in the figures.

Multi—client | multi—server

EasyDB
Appllcatlon Application Application
ADM ADM ADM

¢IE§€%I¢

Performance
Considerations

Performance
Factors

Here are some major performance-
related design considerations.

The whole EasyDB design rests on the
assumption that a large number of op-
erations are performed on a cluster
once it has been opened.

NQL has strong (static) type checking.
As much work as possible is moved
from run-time to compile-time. (Most
NQL statements appear in two ver-
sions, with static or dynamic type
checking. Dynamic type checking is
sometimes very useful, but not as effi-
cient as static type checking.) This is a
strong reason for making NQL em-
bedded rather than implementing it as
a procedure library.

The run-time system uses a binary
summary of pertinent schema data.
This data structure (called a cluster
map) is generated by the C—DDL
compiler. It eliminates the need for run-
time access to the data dictionary.

Measurements have confirmed that
there are two key performance factors.
The first is the time for bringing a clus-
ter from disk to virtual memory; the
second is "in-core” operations.

BO96 1170 8

Base/OPEN Object—Oriented Data Base Management System,

EasyDB — Release 5

Storage 1/0

In—core
performance

Transactions

The cluster transfer speed from a local
disk is about 500 kb/s. This is not too
far from the OS/UNIX file transfer
speed. Across an 10Mbit Ethernet LAN
(NFS) about the same cluster reading
speed can be reached but the writing
speed is decreased.

In—core operations are very fast. As a
rule-of-thumb a simple operation (navi-
gating one step, or getting the value of
an attribute) takes 40 us (on a two
MIPS machine). This includes complete
checking for all kinds of conflicts, in-
cluding domain boundaries. This is in
the order of 100 times faster than a av-
erages of similar operations reported in
Duhl, J. & Damon, C.3 (Data size is
also cut to around one third.)

EasyDB supports two levels of transac-
tions, short-term and long-lasting. Short-
term transactions include open, close,
checkpoint. Long-lasting transaction
concepts are reserve, replace, branch,
cancel.

Product Summary

EasyDB releases 5 product highlights
are summarized in:

Multi-user system with network distrib-
uted storage — can be scaled down to
single-user and single-host configura-
tions.

Strong modeling system (both graphi-
cal and textual). Dynamic schema
evolution.

Well integrated language bindings.
Static or dynamic name resolution.
Multimedia support.

Safe and easy to use conflict handling
throughout the system.

Support for Configuration Manage-
ment.

Powerful distribution mechanism. Net-
work topology independent.

Technology independent layers.

High performance. Short and long—
lasting transactions.

3. A Performance Comparison of Object and Relational Databases
Using the Sun Benchmark. Proc. of OOPSLA Conf. 1988.

Product Releases

EasyDB multi-user releases 5.2 and
EasyDB LiTe releases 5.1 are the ver-
sions of Base/OPEN ODBMS available
as supported products at this writing.
EasyDB 4.x and 5.x supports both
64-bit and 32-bit architectures.

Both EasyDB releases are easy to
install and maintain. The EasyDB multi-
user releases includes utilities for start-
ing and monitoring storage data man-
agers and for building a configuration
file defining the hardware and run-time
configuration.

Porting Base and Hardware Requirements

EasyDB releases 5.1 and 5.2 are avail-
able on most UNIX platforms (e.g. Sun
Sparc, Digital Alpha, SGI) and for
Microsoft Windows on Intel.

Cross-platform development is sup-
ported. The EasyDB run-time is easily
ported to POSIX compliant platforms.
Application development may be done
on a e.g. standard UNIX platform, and
the application may then be re-com-
piled and linked on the target platform.

Please contact Basesoft Open Systems
or your local EasyDB representative for
further information on which configura-
tions of tools, compilers etc. are sup-
ported on different platforms.

An EasyDB development installation
requires 10—40 Mb of disk storage de-
pending on configuration.

An EasyDB run-time installation re-
quires 5—20 Mb of disk storage for Ea-
syDB software apart from the disk stor-
age needed for the data base.

There is no special requirement on
physical memory. The EasyDB SDM
server uses about 1—3Mb of memory.
The EasyDB run-time caches data to
clients. Host running client applications
should have free physical or virtual
memory available for at least twice the
size of the largest cluster instance used
(e.g. 1—20Mb).

BO96 1170 9

Base/OPEN Object—Oriented Data Base Management System,

EasyDB — Release 5

Pricing and Licensing

Price for first multi-user development
and 5-user run-time system license is
USD 998 or EUR 828. EasyDB LiTe is
available starting from USD 860 for one
OEM application run-time. Quantity, ed-
ucational and re-seller discounts are
available. Maintenance and support
agreements are also available. Evalua-
tion licence available. One or three day
introduction courses will get you easily
started using the product.

Documentation

The following documentation is provided
with the EasyDB product:

EasyDB C—DDL Reference Manual
BO 90 082

EasyDB NQL Reference Manual
BO 90 060

EasyDB DBed Reference Manual
BO 89 206

EasyDB Tools Reference Manual
BO 91 013

EasyDB DBI C++ Reference Manual
BO 91 088

EasyDB DBI Ada95 Reference Manual
BO 98 102

EasyDB NQL C example
BO 91 008

EasyDB NQL Ada example
BO 93 012

EasyDB and C++ — example
BO 91 123

EasyDB and Ada95 — example
BO 97 521

EasyDB Modelling
BO 91 009

EasyDB Installation and Release
Document
BO 91 116

Media

EasyDB LiTe Installation and Release
Document
BO 96 202

EasyDB Administrator’s Guide
BO 91 115

EasyDB Glossary
BO 91 002

EasyDB DBed sample session
BO 90 110

EasyDB GDDL, Ramatic, Reference
BO 91 137

The software, including on-line manual
pages, is distributed on a selection of
media types depending on the host
platform.

For further information, please contact your local
EasyDB representative or Jaan Haabma at Base-
soft Open Systems AB on:

phone: +46 8 13 17 20, fax: +46 8 13 17 25,
E—mail:request@basesoft.se

Trademarks are owned by their resepecive com-
panies.

UNIX is a registered trademark of UNIX System
Laboratories, Inc..

SunOS, NFS are trademarks of Sun Microsys-
tems, Inc..

Domain/OS, NCS are trademarks of Hewlett Pack-

ard, Inc..

Base/OPEN, Base/OPEN ODBMS, Base/OPEN
EasyDB are trademarks of Basesoft Open Sys-
tems AB and Telia AB.

© Copyright 1993-2005 Basesoft Open Systems
AB, SWEDEN.

Specifications subject to change without notice.

Post address:

Basesoft Open Systems AB
Box 34 140

S—100 26 STOCKHOLM
Sweden

Office address:
Gjorwellsgatan 22, 13 TR

MARIEBERG—-STOCKHOLM

Phone:
+468—-13 17 20
Telefax:
+468—-1317 25
BO9 1170 10

